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Abstract
This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-
objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The
proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon
level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the perfor-
mance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions
(relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are
used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR,
MOEA/D-CDP andCMOEA/D. The experimental results indicate thatMOEA/D-IEpsilon is significantly better than the other
four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with
large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test
the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs
on this problem.

Keywords Constrained multi-objective evolutionary algorithms · Epsilon constraint handling · Constrained multi-objective
optimization · Robot gripper optimization

1 Introduction

Real-world optimization problems usually involve the simul-
taneous optimization of multiple conflicting objectives with
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a number of constraints. Without loss of generality, a CMOP
considered in this paper is defined as follows (Deb 2001):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize F(x) = ( f1(x), . . . , fm(x))T

subject to gi (x) ≥ 0, i = 1, . . . , q

h j (x) = 0, j = 1, . . . , p

x ∈ R
n

(1)

where F(x) = ( f1(x), f2(x), . . . , fm(x))T ∈ R
m is an m-

dimensional objective vector, gi (x) ≥ 0 is an inequality
constraint and h j (x) = 0 is an equality constraint. x ∈ R

n

is an n-dimensional decision vector. The feasible region
S is defined as the set {x|gi (x) ≥ 0, i = 1, . . . , q and
h j (x) = 0, j = 1, . . . , p}.

In CMOPs, there is usually more than one constraint. The
overall constraint violation is a widely used approach to deal
with constraint violations, as it summarizes them into a single
scalar, as follows:
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φ(x) =
q∑

i=1

|min(gi (x), 0)| +
p∑

j=1

|h j (x)| (2)

If φ(x) = 0, x is feasible; otherwise, it is infeasible. Any
solution in set S is feasible, and for any two solutions x1 ∈ S
and x2 ∈ S, x1 is said to dominate x2 if fi (x1) ≤ fi (x2)
for each i ∈ {1, . . . ,m} and f j (x1) < f j (x2) for at least
one j ∈ {1, . . . ,m}, denoted as x1 � x2. For a solution
x∗ ∈ S, if there is no other solution in S dominating x∗, then
x∗ is called a Pareto optimal solution. A set including all of
the Pareto optimal solutions is called a Pareto optimal set
(PS). Mapping the PS into the objective space obtains a set
of objective vectors, which is called a Pareto optimal front
(PF), and PF = {F(x)|x ∈ PS}.

CMOEAs aim to find a representative set of Pareto opti-
mal solutions. They have to tackle the multiple conflicting
objectives with a number of constraints simultaneously and
to maintain a good balance between convergence and diver-
sity of the achieved solutions. In CMOEAs, there are two
basic components:One is the constraint-handlingmechanism
and the other is the multi-objective evolutionary algorithm
(MOEA).

In terms of constraint handling, many methods have been
proposed in evolutionary optimization (Cai et al. 2013; Hu
et al. 2013). They can be roughly divided into penalty func-
tion methods, special representations and operators, repair
methods, separation of objectives and constraints and hybrid
methods (Coello Coello 2002). The penalty function method
is widely used due to its simplicity in the constraint handling
(Runarsson and Yao 2005). However, the ideal penalty fac-
tors cannot be known in advance for an arbitrary CMOP, and
tuning the penalty factors can be a very tedious task.

In recent years, a number of other constraint-handling
techniques have had a relatively high impact on evolu-
tionary optimization, including feasibility rules, stochastic
ranking, ε-constrained method, novel penalty functions,
novel special operators, multi-objective concepts and ensem-
ble of constraint-handling techniques (Mezura-Montes and
Coello Coello 2011). However, most of them aim to solve
constrained scalar optimization problems when they are first
proposed.

MOEAs can be classified into three different types
according to their selection approaches. The first type is
non-dominated-based methods, and representative examples
include NSGA-II (Deb et al. 2002), PAES-II (Corne et al.
2001), SPEA-II (Zitzler et al. 2001), NSGA-III (Deb and
Jain 2014) and so on. The second type is decomposition-
based approaches, and typical examples include MOEA/D
(Zhang and Li 2007), MOEA/D-DE (Li and Zhang 2009),
EAG-MOEA/D (Cai et al. 2015), MOEA/D-M2M (Liu et al.
2014), MOEA/D-SAS (Cai et al. 2017) and so on. Currently,
MOEA/D is a popular algorithm to solve unconstrained

multi-objective optimization problems (MOPs). MOEA/D
decomposes a MOP into many scalar optimization subprob-
lems and optimizes them simultaneously in a collaborative
way. The last type is indicator-based methods. This type of
MOEAs selects solutions based on the improvement of a
performance metric. Representative methods include IBEA
(Zitzler and Künzli 2004), SMS-EMOA (Beume et al. 2007),
HypE (Bader and Zitzler 2011), FV-MOEA (Jiang et al.
2015) and so on.

There are two commonly used test suites of CMOPs,
includingCTP (Deb 2001) andCF test instances (Zhang et al.
2008). For CTP1-CTP5 and CF1-CF10, the feasible regions
are relatively large, and a CMOEA can approximate their
PFs without encountering any infeasible obstacles during
the entire evolutionary process. Thus, CTP1-5 and CF1-
10 are not good test problems to evaluate the performance
of constraint-handling mechanisms. For the remaining test
problems CTP6-8, the feasible regions are relatively large,
and the population of a CMOEA can reach these regions
with high probability. Thus, CTP and CF test suites cannot
effectively measure the performance of constraint-handling
techniques. When solving CTP (Deb 2001) and CF (Zhang
et al. 2008) test instances, the constraint dominance princi-
ple (CDP) (Deb et al. 2002) is good enough to handle the
constraints.

To overcome the shortcomings of the CTP and CF test
suites discussed above, we propose a set of new CMOPs
(named LIR-CMOP1-14). Each of them has a number of
large infeasible regions, and the feasible regions are relatively
small. The population of a CMOEA cannot easily discover
these small feasible regions, which brings new challenges to
the existing CMOEAs. In fact, many real-world optimization
problems also have this characteristic. For example, the robot
gripper optimization problem considered in this paper has
large infeasible regions as illustrated in Sect. 6. Thus, it has
important significance in practice to design specific mecha-
nisms for solving CMOPs with large infeasible regions.

In this paper, we propose an improved ε-constrained ver-
sion of MOEA/D to deal with CMOPs. Compared with the
original ε-constrained method (Takahama and Sakai 2006),
the proposed method can keep a good balance in the search
between the feasible and infeasible regions (Črepinšek et al.
2013). It uses the information of the ratio of feasible to total
solutions of the current population to dynamically balance
the exploration between the feasible regions and infeasible
regions.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the related work on MOEA/D and the
existing CMOEAs based on MOEA/D. Section 3 illustrates
the improved epsilon constraint-handling method as here
embedded in MOEA/D. Section 4 designs a set of new
CMOPs (LIR-CMOPs) with large infeasible regions. Sec-
tion 5 describes a comprehensive set of experiments to com-
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pare the proposed CMOEA (MOEA/D-IEpsilon) with four
other CMOEAs, including MOEA/D-Epsilon, MOEA/D-
SR, MOEA/D-CDP and CMOEA/D. In Sect. 6, a robot
gripper optimization problem is used to test MOEA/D-
IEpsilon and the other four CMOEAs. Finally, Sect. 7
presents the conclusions.

2 Related work

2.1 MOEA/D

MOEA/D (Zhang and Li 2007) decomposes a MOP into a
number of scalar optimization subproblems and optimizes
them simultaneously in a collaborative way. Each subprob-
lem is defined by a decomposition function with a weight
vector λi . In MOEA/D, a set of N uniformly spread weight
vectors λ1, . . . , λN are adopted to formulate N subprob-
lems. The weight vectors λi satisfy

∑m
k=1 λik = 1 and

λik ≥ 0 for each k ∈ {1, . . . ,m}. In terms of decomposition
methods, there are three commonly used approaches, includ-
ing weighted sum (Miettinen 1999), Tchebycheff (Miettinen
1999) and boundary intersection approaches (Zhang and Li
2007).

In theweighted sum approach, each subproblem is defined
by summing each objective weighted by a different weight.
The j th subproblem with the weighted sum decomposition
method is defined as follows:

minimize gte(x|λ) =
m∑

i=1

λ
j
i fi (x)

subject to x ∈ S (3)

For a minimizing MOP, in the case of a convex PF, the
weighted sum approach can work well. However, if the PF is
non-convex, only a part of PF can be found by this approach.

In the Tchebycheff decomposition method, the j th sub-
problem is defined as follows:

minimize gte(x|λ, z∗) = max
1≤i≤m

{λ j
i | fi (x) − z∗i |}

subject to x ∈ S (4)

where z∗ = (z∗1, . . . , z∗m) is the ideal point, and z∗i =
min{ fi (x|x ∈ S}. The Tchebycheff method is a widely used
decomposition approach. It can approximate both concave
and convex parts of PFs.

In the boundary intersection approach, two distances d1
and d2 are defined to evaluate the convergence and diversity,
respectively. The j th subproblem is defined as follows:

minimize gpbi (x|λ j , z∗) = d1 + θd2

subject to x ∈ S

where d1 = ‖(F(x) − z∗)Tλ j‖
‖λ j‖

d2 =
∥
∥
∥
∥(F(x) − z∗) − d1

(
λ j

‖λ j‖
)∥

∥
∥
∥ (5)

The boundary intersection method is able to solve MOPs
with any shape of PFs. However, the penalty factor θ must
be set in advance.

2.2 Decomposition-based CMOEAs

In decomposition-based CMOEAs, a CMOP is decomposed
into a set of constrained scalar optimization subproblems, and
these subproblems are solved in a collaborative way simulta-
neously. Representative methods include CMOEA/D (Asa-
fuddoula et al. 2012), MOEA/D-Epsilon (Yang et al. 2014),
MOEA/D-CDP (Jan and Khanum 2013) and MOEA/D-SR
(Jan and Khanum 2013).

CMOEA/D (Asafuddoula et al. 2012) embeds an epsilon
constraint-handling approach intoMOEA/D, and the epsilon
value is set adaptively. To be more specific, the epsilon level
is set to CVmean ∗ RFS. CVmean denotes the mean value of
the overall constraint violation in the current population, and
RFS (Number of feasible solutions

Population size ) denotes the ratio of feasible to
total solutions in the current population. For two solutions, if
their overall constraint violations are both less thanCVmean ∗
RFS or their overall constraint violations are equal, the one
with the better aggregation value is selected. Otherwise, the
one with the smaller overall constraint violation is selected.

MOEA/D-Epsilon (Yang et al. 2014) also adopts the
epsilonmethod to handle constraints. Unlike CMOEA/D, the
epsilon value in MOEA/D-Epsilon is set dynamically with
the increase of generation counter K . The detailed setting
of the epsilon value can be found in Takahama and Sakai
(2006).

MOEA/D-CDP (Jan andKhanum2013) adoptsCDP (Deb
et al. 2002) to deal with constraints in the framework of
MOEA/D. There are three basic rules to select solutions. For
two feasible solutions, the one with the better aggregation
value is selected. For two infeasible solutions, the one with
the smaller overall constraint violation is selected. For a fea-
sible and an infeasible solution, the feasible one is selected.

MOEA/D-SR (Jan and Khanum 2013) embeds the
stochastic rankingmethod (SR) (Runarsson andYao 2000) in
MOEA/D to deal with constraints. A parameter p f ∈ [0, 1]
is set to balance the selection between the objectives and the
constraints in MOEA/D-SR. For two solutions, if a random
number is less than p f , the one with the better aggregation
value is selected into the next generation. If the random num-
ber is greater than p f , the solutions selection is similar to that
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of MOEA/D-CDP. In the case of p f = 0, MOEA/D-SR is
equivalent to MOEA/D-CDP.

In summary, CMOEA/D and MOEA/D-Epsilon both
adopt the epsilon constraint-handling approach to solve
CMOPs. To get across large infeasible regions, ε should be
increased at sometimes and be greater than the maximum
overall constraint violation in the current population. How-
ever, in CMOEA/D, ε is always less than or equal toCVmean ,
and in MOEA/D-Epsilon, ε is always decreasing during
the evolutionary process. In MOEA/D-CDP, feasible solu-
tions are always better than infeasible solutions. Thus, the
infeasible solutions which can help to get across large infea-
sible regions are difficult to survive. MOEA/D-SR applies a
parameter p f to balance the searching between the feasible
and infeasible regions. In order to get across large infeasible
regions, p f should be set dynamically.However, p f is a static
parameter in MOEA/D-SR. To overcome the shortcomings
of the four decomposition-based CMOEAs discussed above,
an improved epsilon constraint-handling method embedded
in MOEA/D is proposed.

3 The proposedmethod

In this section, the concept of epsilon level comparison,
the original epsilon level setting method and the improved
epsilon level setting approach are described.

3.1 Epsilon level comparison

In the epsilon constraint handling approach (Takahama and
Sakai 2006), the relaxation of constraints is controlled by
the epsilon level ε. For two solutions x1 and x2, their overall
constraint violations areφ1 andφ2. Then, for any ε satisfying
ε ≥ 0, the epsilon level comparison�ε is defined as follows:

(x1, φ1) �ε (x2, φ2) ⇔

⎧
⎪⎨

⎪⎩

x1 � x2, if φ1, φ2 ≤ ε

x1 � x2, if φ1 = φ2

φ1 < φ2, otherwise

(6)

In Eq. (6), the epsilon comparison approach is equivalent
to CDP (Deb et al. 2002) when ε = 0. In the case of ε =
∞, it does not consider any constraints. In other words, the
comparison between any two solutions is based on their non-
dominated ranks on objectives when ε = ∞.

3.2 Epsilon Level Setting

In the epsilon constraint-handling method, the setting of ε

is quite critical. In Takahama and Sakai (2006), an epsilon
level setting method is suggested as follows:

ε(k) =
{

ε(0)(1 − k
Tc

)cp, 0 < k < Tc, ε(0) = φ(xθ )

0, k ≥ Tc
(7)

where xθ is the top θ th individual of the initial population
sorted by overall constraint violations in a descending order.
cp is to control the speed of reducing relaxation of con-
straints. ε(k) is updated until the generation counter k reaches
the control generation Tc. When k ≥ Tc, ε(k) = 0. The rec-
ommended parameter ranges in Takahama and Sakai (2006)
are listed as follows: θ = (0.05 ∗ N ), cp ∈ [2, 10] and
Tc ∈ [0.1Tmax , 0.8Tmax ]. N denotes the population size,
and Tmax represents the maximum evolutionary generation.

3.3 Improved epsilon level setting

The setting of ε(k) in Eq.(7) is always decreasing during
the evolutionary process, which may not be suitable to solve
CMOPswith large infeasible regions. To overcome this prob-
lem, an improved epsilon setting approach is suggested as
follows:

ε(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rule1: φ(xθ ), if k = 0

rule2: (1 − τ)ε(k − 1), if rk < α and k < Tc
rule3: (1 + τ)φmax , if rk ≥ α and k < Tc
rule4: 0, if k ≥ Tc

(8)

where φk(xθ ) is the overall constraint violation of the top θ th
individual in the initial population and rk is the ratio of feasi-
ble to total solutions in the kth generation. τ ranges between
0 and 1 and has two functions. One is to control the speed
of reducing the relaxation of constraints, and the other is to
control the scale factor multiplied by the maximum overall
constraint violation. α is to control the searching preference
between the feasible and infeasible regions, and α ∈ [0, 1].
φmax is the maximum overall constraint violation found so
far.

The ε(0) setting method in Eq. 8 is sometimes the same
as that in Eq. 7. If ε(0) = 0, ε(k) in Eq. 7 is identically equal
to zero, which tends to hinder a CMOEA’s exploration of the
infeasible regions. However, ε(k) in Eq. 8 is not identically
equal to zero when ε(0) = 0 according to the third rule of
the proposed epsilon setting approach.

In the case k > 0, three rules are adopted to control the
value of ε in Eq. 8. Rule2 is adopted to strengthen the search-
ing in the feasible regions. Rule3 is used to strengthen the
exploration in the infeasible regions. The last rule4 is same
as in the CDP (Deb et al. 2002) constraint-handling method.

Two parameters k and rk are applied to choose the right
control rule for ε(k). If k < Tc and rk < α, rule2 for
setting ε(k) is adopted. In this circumstance, ε(k) is set to
(1 − τ)ε(k − 1), which has an exponential decreasing rate.
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It has a faster descent rate than the epsilon setting in Eq.
(7), which can help to enhance the searching in the feasible
regions more effectively. If k < Tc and rk ≥ α, rule3 for
setting ε(k) is applied. In this situation, most solutions are
feasible. Thus, strengthening the exploration in the infea-
sible regions may help a CMOEA to get across a number
of large infeasible regions. In rule3, ε(k) = (1 + τ)φmax ,
which strengthens the exploration in the infeasible regions.
Thus, the improved epsilon method has the balanced ability
to explore the feasible and infeasible regions simultaneously.

α is a critical parameter to balance the searching between
the feasible and infeasible regions. If the RFS rk is less than
α, rule2 is adopted to enhance the exploration in the feasible
regions. Otherwise, rule3 is applied to enhance the explo-
ration in the infeasible regions. Thus, the proposed epsilon
constraint method can keep a good balance of exploration
between the feasible and infeasible regions. It utilizes the
RFS to dynamically balance the exploration between the fea-
sible regions and infeasible regions.

Compared with the ε setting in Eq. (7), the proposed
method in Eq. (8) has the ability to increase ε(k) during the
evolutionary process, which can help to solve CMOPs with
large infeasible regions.

In the case of k ≥ Tc, rule4 is applied. In this situation,
ε(k) = 0, and the epsilon constraint-handling method exerts
the highest selection pressure toward the feasible regions.

3.4 Embedding the improved epsilonmethod in
MOEA/D

The proposed MOEA/D-IEpsilon integrates the improved
epsilon constraint-handling method in Eq. 8 into the frame-
work of MOEA/D. In MOEA/D-IEpsilon, a CMOP is
decomposed into a number of constrained scalar subprob-
lems, and these subproblems are optimized simultaneously in
a collaborative way. In our experimental studies, the Tcheby-
cheff approach is adopted, and its detailed definition is listed
in Eq. (4).

For a given weight vector λ, there exists an optimal solu-
tion of Eq. (4), and this optimal solution is also a Pareto
optimal solution of Eq. (1). Therefore, we can achieve dif-
ferent Pareto optimal solutions of Eq. (1) by setting different
weight vectors.

The pseudocode of MOEA/D-IEpsilon is listed in Algo-
rithm 1. It is almost the same as that of MOEA/D, except
for the method of subproblem updating. Lines 1–6 initial-
ize a number of parameters in MOEA/D-IEpsilon. First, a
CMOP is decomposed into N subproblems which are asso-
ciated with λ1, . . . , λN . Then, the population P , the initial
epsilon value ε(0), the proportion of feasible solutions in the
kth generation rk , the maximum overall constraint violation
φmax found so far, the ideal point z∗ and the neighbor indexes
B(i) are initialized.

Algorithm 1: MOEA/D-IEpsilon
Input:
N : the number of subproblems.
FESmax : the maximum function evaluations.
Tmax : the maximum generation, Tmax = FESmax/N
N weight vectors: λ1, . . . , λN .
T : the size of the neighborhood.
δ: the selecting probability from neighbors.
nr : the maximal number of solutions replaced by a child.
Parameters τ , α, Tc and θ in Eq. (8).
Output:
NS : a set of feasible non-dominated solutions

1 Decompose a CMOP into N subproblems associated with
λ1, . . . , λN .

2 Generate an initial population P = {x1, . . . , xN }.
3 Initialize ε(0), rk and φmax according to Eq. (8).
4 Initialize the ideal point z∗ = (z1, . . . , zm).
5 For each i = 1, . . . , N , set B(i) = {i1, . . . , iT }, where

λi1 , . . . , λiT are the T closest weight vectors to λi .
6 Set FES = 0 and k = 0.
7 while FES ≤ FESmax do
8 if k > 0 then
9 ε(k) = SetEpsilon(τ ,rk ,α,φmax ,Tc,k)

10 end
11 Generate a random permutation rp from {1, . . . , N }.
12 for i ← 1 to N do
13 Generate a random number r ∈ [0, 1]
14 Set j = rp(i).
15 if r < δ then
16 S = B( j)
17 else
18 S = {1, . . . , N }
19 end
20 Generate y j through the DE operator.
21 Perform polynomial mutation on y j .
22 Evaluate the newly generated solution y j .
23 FES = FES + 1; update φmax
24 for t ← 1 to m do
25 if z∗t > ft (y j ) then z∗t = ft (y j ) ;
26 end
27 Set c = 0.
28 while c < nr or S �= ∅ do
29 select an index j from S randomly.
30 result = UpdateSubproblems(x j , y j , ε(k))
31 if result == true then c = c + 1;
32 S = S\{ j}
33 end
34 end
35 k = k + 1; update rk
36 NS = NondominatedSelect(NS

⋃
P)

37 end

Lines 8–10 set the value of ε(k) according to Algorithm
3. Lines 11–26 generate a set of new solutions and update
z∗, FES and φmax . To be more specific, a set of solutions
which may be updated by a newly generated solution y j is
selected (lines 11–19). In line 20, the differential evolution
(DE) crossover is adopted to generate a new solution y j . The
polynomialmutation operator is executed tomutate y j in line
21. In line 22, the solution y j is evaluated. FES and φmax
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are updated in line 23. The ideal point z∗ is updated (lines
24–26).

Lines 27–33 implement the updating process of subprob-
lems. In line 30, the subproblems are updated based on
the improved epsilon constraint-handling approach, and the
detailed procedures are listed in Algorithm 2. Finally, a set
of non-dominated solutions (NS) is selected based on the
non-dominated sorting in line 36.

Algorithm 2: Subproblem Update

1 Function result = UpdateSubproblems(x j ,y j ,ε(k))
2 result = f alse
3 if φ(y j ) ≤ ε(k) and φ(x j ) ≤ ε(k) then
4 if gte(yi |λ j , z∗) ≤ gte(x j |λ j , z∗) then
5 x j = y j

6 result = true
7 end
8 else if φ(y j ) == φ(x j ) then
9 if gte(y j |λ j , z∗) ≤ gte(x j |λ j , z∗) then

10 x j = y j

11 result = true
12 end
13 else if φ(y j ) < φ(x j ) then
14 x j = y j

15 result = true
16 end
17 return result
18 end

In Algorithm 2, there are three basic rules to update a
subproblem. For two solutions x j and y j , if their overall
constraint violations are less than or equal to ε(k), and y j has
a smaller aggregation value (the value of the decomposition
function) than that of x j , then x j is replaced by y j (lines 3–7).
If x j and y j have the same overall constraint violation, and
y j has a smaller aggregation value than that of x j , then x j is
replaced by y j (lines 8–12). Otherwise, if y j has a smaller
overall constraint violation than that of x j , then x j is replaced
by y j (lines 13–14). When the subproblem is updated, the
function UpdateSubproblems(x j , y j , ε(k)) returns true;
otherwise, it returns f alse.

Algorithm 3: Set Epsilon
1 Function ε(k) = SetEpsilon(τ ,rk ,α,φmax ,Tc,k)
2 if rk < α and k < Tc then
3 ε(k) = (1 − τ)ε(k − 1)
4 else if rk ≥ α and k < Tc then
5 ε(k) = (1 + τ)φmax
6 else if k ≥ Tc then
7 ε(k) = 0
8 end
9 return ε(k)

10 end

InAlgorithm 3, the value of ε(k) is set according to the last
three rules in Eq. (8). If the proportion of feasible solutions
rk is less than the predefined parameter α, and the generation
counter k is less than the control generation Tc, ε(k) is set to
(1 − τ)ε(k − 1) (lines 2–3). In lines 4–5, if the proportion
of feasible solutions rk is equal to or greater than the prede-
fined parameter α, and the generation counter k is less than
the control generation Tc, ε(k) is set to (1 + τ)φmax , which
corresponds to the rule3 in Eq. (8). When the generation
counter k is equal to or greater than the control generation
Tc, ε(k) is set to zero. This is realized in lines 6–7, which
reflects the rule4 in Eq. (8).

4 Test instances

To evaluate the performance of the proposed MOEA/D-
IEpsilon, a set of new CMOPs with large infeasible regions
(named LIR-CMOPs) is designed according to our previous
work (Fan et al. 2016). In terms of constraint functions, all
of them have large infeasible regions. In term of objective
functions, there are two components: shape functions and
distance functions (Huband et al. 2006).

The shape functions are applied to set the shape of the PFs.
In the LIR-CMOP test suite, two types of shape functions,
including both convex and concave shapes, are designed.
Distance functions are adopted that test the convergence per-
formance of a CMOEA. In LIR-CMOP5-14, the distance
functions are multiplied by a scale factor, which increases
difficulty of convergence. The detailed definitions of LIR-
CMOPs are listed in “Appendix.”

In this test suite, four test problems, including LIR-
CMOP1-4, have large infeasible regions. Figure 1a–d plots
the feasible regions of LIR-CMOP1-4, respectively. It can be
seen that the feasible regions of these test instances are very
small. In other words, there are a number of large infeasible
regions.

LIR-CMOP5 and LIR-CMOP6 have convex and concave
PFs, respectively, as shown in Fig. 1e–f, and their PFs are
the same as those of their unconstrained counterparts. The
PFs of LIR-CMOP5 and LIR-CMOP6 can be achieved by a
MOEA without any constraint-handling mechanisms.

In order to expand the test scope, LIR-CMOP7 and LIR-
CMOP8 are designed. For these two test instances, their
unconstrained PFs are located in the infeasible regions, and
their PFs are situated on their constraint boundaries. Thus,
a MOEA without constraint-handling methods cannot find
the real PFs for LIR-CMOP7 and LIR-CMOP8, which are
shown in Fig. 1g, h.

LIR-CMOP9-12 have two different types of constraints.
The first type creates large infeasible regions as shown in the
black ellipses in Fig. 1i–l. The second type creates difficulty
in the entire objective space, as it divides the PFs of LIR-
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Fig. 1 Illustrations of the feasible and infeasible regions of LIR-CMOP1-12

CMOP9-12 into a number of disconnected segments. For
LIR-CMOP9-10, their PFs are a part of their unconstrained
PFs, and for LIR-CMOP11-12, their PFs are situated on their
constraint boundaries.

In the LIR-CMOP test suite, CMOPswith three objectives
are also designed. TwoCMOPs, includingLIR-CMOP13 and

LIR-CMOP14, have three objectives as shown in Fig. 2a, b.
The PF of LIR-CMOP13 is the same as that of its uncon-
strained counterpart. The PF of LIR-CMOP14 is located on
the boundaries of its constraints.
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Fig. 2 Illustrations of the infeasible regions of LIR-CMOP13-14

5 Experimental study

5.1 Experimental settings

To evaluate the performance of the proposed MOEA/D-
IEpsilon, four other CMOEAs (MOEA/
D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D),
with differential evolution (DE) crossover, are tested on LIR-
CMOP1-14. The detailed parameters of these five CMOEAs
are listed as follows:

1. Mutation probability Pm = 1/n (n is the number of
decision variables) and its distribution index is set to 20.
CR = 1.0, f = 0.5.

2. Population size: N = 300.
3. Neighborhood size: T = 30.
4. For two objective CMOPs, the i th weight vector λi =

( i−1
N−1 ,

N−i
N−1 ). For three objective CMOPs, the N weight

vectors are defined in the file W3D_300.dat in the Web
site.1

5. Stopping condition: Each algorithm runs for 30 times
independently and stops when 300,000 function evalua-
tions are reached.

6. Probability of selecting individuals in the neighborhood:
δ = 0.9.

7. The maximal number of solutions replaced by a child:
nr = 2.

8. Parameter setting in MOEA/D-IEpsilon: Tc = 800, α =
0.95, τ = 0.1 and θ = 0.05N .

9. Parameter setting in MOEA/D-Epsilon: Tc = 800, cp =
2, and θ = 0.05N .

10. Parameter setting in MOEA/D-SR: Sr = 0.05.

1 http://imagelab.stu.edu.cn/Content.aspx?type=content&Content_
ID=238.

5.2 Performancemetric

To measure the performance of MOEA/D-IEpsilon,
CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-
Epsilon, two commonly used metrics—the inverted gener-
ation distance (IGD) (Bosman and Thierens 2003) and the
hypervolume (Zitzler and Thiele 1999)—are adopted. The
definition of IGD is shown next.

– Inverted Generational Distance (IGD):

The IGD metric reflects the performance regarding conver-
gence and diversity simultaneously. The detailed definition
is as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IGD(P∗, A) =
∑

y∗∈P∗ d(y∗,A)

|P∗|

d(y∗, A) = min
y∈A

{√∑m
i=1(y

∗
i − yi )2

} (9)

where P∗ is a set of representative solutions in the ideal
PF and A is an approximate PF achieved by a CMOEA.
The value of IGD denotes the distance between P∗ and A.
For CMOPs with two objectives, 1000 points are sampled
uniformly from the true PF to construct P∗. (Note that this
measure cannot be used if the true Pareto front is unknown, so
it is used primarily for benchmarking purposes.) For CMOPs
with three objectives, 10,000 points are sampled uniformly
from the PF to constitute P∗. It is worth noting that a smaller
value of IGD represents better performance with regard to
both diversity and convergence.
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– Hypervolume (HV ):

HV reflects the closeness of the non-dominated set achieved
by a CMOEA to the real PF. The larger HV means that the
corresponding non-dominated set is closer to the true PF.

HV (S) = V OL

(
⋃

x∈S
[ f1(x), zr1] × · · · [ fm(x), zrm]

)

(10)

where V OL(·) is the Lebesguemeasure, zr = (zr1, . . . , z
r
m)T

is a reference point in the objective space. For a LIR-CMOP,
the reference point is placed at 1.2 times the distance to the
nadir point of the true PF. It is worth noting that a larger
value of HV represents better performance regarding both
diversity and convergence.

5.3 Significance test methods

Two significance test methods, includingWilcoxon rank sum
test and the Friedman aligned test, are used to check whether
the difference between the proposed MOEA/D-IEpsilon and
the compared CMOEAs is statistically significant. By using
the Friedman aligned test, we aim to compare all the five
CMOEAs, while the Wilcoxon test allows us to compare
MOEA/D-IEpsilon with the other four CMOEAs individu-
ally. Each test is carried out with a 0.05 significance level.
To control the family-wise error rate (FWER), a set of post
hoc procedures, including the Bonferroni–Dunn procedure
(Dunn 1961), the Holm procedure (Holm 1979), the Hol-
land procedure (Holland and Copenhaver 1987), the Finner
procedure (Finner 1993), theHochberg procedure (Hochberg
1988), theHommel procedure (Hommel 1988), the Rompro-
cedure (Rom 1990) and the Li procedure (Li 2008), are used
according to Derrac et al. (2011).

5.4 Discussion of experiments

5.4.1 Performance comparison on LIR-CMOP test suite

The statistical results of the IGD values on LIR-CMOP1-
14 achieved by five CMOEAs in 30 independent runs
are listed in Table 1. The Friedman aligned test indicates
that MOEA/D-IEpsilon ranks the highest among the five
CMOEAs, as shown in the last row of Table 1. The p-value
computed through the statistics of theFriedmanaligned test is
1.055E−07, which strongly suggests the existence of signif-
icant differences among the five tested CMOEAs. To check
whether the difference between MOEA/D-IEpsilon and the
compared CMOEAs is statistically significant, a set of post
hoc procedures are carried out as shown in Table 2. Since
each p-value in Table 2 is less than the preset significance
level 0.05,we can conclude thatMOEA/D-IEpsilon performs
significantly better than the other four CMOEAs in terms of
IGD metric.

Table 3 shows the results of the HV values of LIR-
CMOP1-14 achieved by five CMOEAs in 30 independent
runs. From the last row of this table, we can observe
that MOEA/D-IEpsilon ranks the highest among the five
CMOEAs according to the Friedman aligned test. The p
value computed through the statistics of the Friedman aligned
test is 8.864E−08, which strongly suggests the existence
of significant differences among the algorithms considered.
To check whether the difference betweenMOEA/D-IEpsilon
and the comparedCMOEAs is statistically significant, a fam-
ily of post hoc tests is carried out as shown in Table 4. Since
each p-value in Table 4 is less than the preset significance
level 0.05, we can also conclude thatMOEA/D-IEpsilon per-
forms significantly better than the other four CMOEAs in
terms of HV metric (Table 3).

LIR-CMOP1-4 have large infeasible regions in the entire
search space, as discussed in Sect. 4. For these four test
instances, MOEA/D-IEpsilon is significantly better than the
other four tested CMOEAs in terms of the IGD metric.
Figure 3a, b shows the final populations achieved by each
CMOEAwith the best IGD values during the 30 runs on LIR-
CMOP1 and LIR-CMOP4. It is clear thatMOEA/D-IEpsilon
has the best performance regarding diversity among the five
CMOEAs under test.

LIR-CMOP5-12 have large infeasible regions, as dis-
cussed in Sect. 4. It can be observed that MOEA/D-IEpsilon
is significantly better than the other four tested CMOEAs
on LIR-CMOP5-12. The final populations achieved by
each CMOEA on LIR-CMOP9 and LIR-CMOP11 with
the best IGD values are plotted in Fig. 3c, d. For LIR-
CMOP9, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP
and CMOEA/D only achieve a part of the real PF. How-
ever, MOEA/D-IEpsilon can obtain the whole real PF.
Thus, MOEA/D-IEpsilon performs better than the other
four CMOEAs in terms of diversity. For LIR-CMOP11,
the proposed method MOEA/D-IEpsilon can achieve the
whole PF. However, the other four CMOEAs do not con-
verge to the whole PF. Thus, MOEA/D-IEpsilon has better
convergence performance than the other four CMOEAs.
For three-objective test instances (LIR-CMOP13 and LIR-
CMOP14), MOEA/D-IEpsilon is also significantly better
than the other four CMOEAs.

From the above analysis, It is clear thatMOEA/D-IEpsilon
is significantly better than the other four CMOEAs on all of
the 14 test instances.

5.4.2 Investigation on searching balance

To investigate the searching balance of MOEA/D-IEpsilon,
we plot the ratios of feasible to total solutions of the working
populations (RFSWP) of MOEA/D-IEpsilon and MOEA/D-
Epsilon on LIR-CMOP1-14 at each generation, as shown
in Fig. 4. For LIR-CMOP1-4, the RFSWP of MOEA/D-
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Table 1 IGD results of MOEA/D-IEpsilon and the other four CMOEAs on LIR-CMOP1-14 test instances

Test instances MOEA/D-IEpsilon MOEA/D-Epsilon MOEA/D-SR MOEA/D-CDP CMOEA/D

LIR-CMOP1

Mean 7.213E−03 7.432E−02† 1.719E−02† 1.163E−01† 1.290E−01†

SD 2.425E−03 3.538E−02 1.554E−02 7.265E−02 8.055E−02

LIR-CMOP2

Mean 5.461E−03 6.407E−02† 9.274E−03† 1.244E−01† 1.627E−01†

SD 1.520E−03 3.869E−02 9.723E−03 5.492E−02 5.819E−02

LIR-CMOP3

Mean 1.117E−02 9.570E−02† 1.792E−01† 2.460E−01† 2.751E−01†

SD 6.856E−03 4.529E−02 7.306E−02 4.444E−02 3.895E−02

LIR-CMOP4

Mean 4.859E−03 6.141E−02† 2.034E−01† 2.486E−01† 2.631E−01†

SD 1.591E−03 4.127E−02 6.038E−02 3.858E−02 3.331E−02

LIR-CMOP5

Mean 2.107E−03 9.455E−01† 1.041E+00† 9.827E−01† 8.637E−01†

SD 2.616E−04 4.705E−01 3.833E−01 4.140E−01 5.071E−01

LIR-CMOP6

Mean 2.058E−01 1.177E+00† 8.699E−01† 1.224E+00† 1.277E+00†

SD 4.587E−01 4.376E−01 5.992E−01 3.726E−01 2.587E−01

LIR-CMOP7

Mean 4.598E−02 1.475E+00† 1.074E+00† 1.402E+00† 1.511E+00†

SD 6.855E−02 5.309E−01 7.606E−01 6.226E−01 5.032E−01

LIR-CMOP8

Mean 3.445E−02 1.522E+00† 1.253E+00† 1.361E+00† 1.575E+00†

SD 6.002E−02 4.716E−01 6.597E−01 5.888E−01 3.849E−01

LIR-CMOP9

Mean 1.290E−02 4.902E−01† 4.883E−01† 4.994E−01† 4.902E−01†

SD 3.300E−02 4.221E−02 4.130E−02 2.526E−02 4.221E−02

LIR-CMOP10

Mean 2.143E−03 2.202E−01† 1.898E−01† 2.042E−01† 2.114E−01†

SD 1.261E−04 3.589E−02 6.277E−02 6.573E−02 5.641E−02

LIR-CMOP11

Mean 4.713E−02 3.809E−01† 2.911E−01† 3.221E−01† 3.321E−01†

SD 5.410E−02 1.131E−01 3.525E−02 7.723E−02 7.109E−02

LIR-CMOP12

Mean 4.711E−02 2.574E−01† 2.045E−01† 2.289E−01† 2.472E−01†

SD 5.662E−02 8.768E−02 6.771E−02 7.823E−02 8.883E−02

LIR-CMOP13

Mean 6.447E−02 1.239E+00† 1.059E+00† 1.190E+00† 1.215E+00†

SD 1.844E−03 2.555E−01 5.033E−01 3.290E−01 3.140E−01

LIR-CMOP14

Mean 6.502E−02 1.172E+00† 9.005E−01† 1.204E+00† 1.054E+00†

SD 1.635E−03 3.043E−01 5.455E−01 2.244E−01 4.515E−01

Friedman aligned test 7.9286 43.75 30.4286 46.0714 49.3214

The last row provides the results of the Friedman aligned test. The p value computed by the aligned Friedman test is 1.055E−07. Wilcoxon rank
sum test at a 0.05 significance level is also performed between MOEA/D-IEpsilon and each of the other four CMOEAs
The best mean is highlighted in boldface
†,‡Performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IEpsilon, respectively
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Table 2 Adjusted p-values for the Friedman aligned test in terms of IGD metric (MOEA/D-IEpsilon is the control method)

Friedman aligned Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

CMOEA/D 0 0 0 0 0 0 0 0 0

MOEA/D-CDP 0.000001 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000001 0.000001

MOEA/D-Epsilon 0.000003 0.000013 0.000006 0.000006 0.000006 0.000006 0.000006 0.000004 0.000003

MOEA/D-SR 0.003443 0.013773 0.003443 0.003443 0.003443 0.003443 0.003443 0.003443 0.003443

Table 3 HV results of MOEA/D-IEpsilon and the other four CMOEAs on LIR-CMOP1-14 test instances

Test instances MOEA/D-IEpsilon MOEA/D-Epsilon MOEA/D-SR MOEA/D-CDP CMOEA/D

LIR-CMOP1

Mean 1.015E+00 9.413E−01† 9.840E−01† 7.499E−01† 7.344E−01†

SD 1.490E−03 3.751E−02 4.630E−02 1.202E−01 1.269E−01

LIR-CMOP2

Mean 1.348E+00 1.267E+00† 1.337E+00† 1.093E+00† 1.033E+00†

SD 1.717E−03 5.526E−02 2.252E−02 1.016E−01 9.522E−02

LIR-CMOP3

Mean 8.686E-01 7.964E−01† 5.892E−01† 5.034E−01† 4.715E−01†

SD 3.373E−03 3.618E−02 1.105E−01 5.141E−02 3.786E−02

LIR-CMOP4

Mean 1.093E+00 1.024E+00† 8.048E−01† 7.397E−01† 7.203E−01†

SD 1.910E−03 5.903E−02 8.956E−02 5.264E−02 4.480E−02

LIR-CMOP5

Mean 1.461E+00 2.833E−01† 1.773E−01† 2.428E−01† 3.870E−01†

SD 9.488E−04 5.766E−01 4.619E−01 5.031E−01 6.151E−01

LIR-CMOP6

Mean 9.412E-01 1.255E−01† 3.341E−01† 8.582E−02† 3.750E−02†

SD 3.848E−01 3.325E−01 4.458E−01 2.707E−01 1.446E−01

LIR-CMOP7

Mean 2.847E+00 3.516E−01† 9.943E−01† 4.811E−01† 2.933E−01†

SD 2.205E−01 9.304E−01 1.268E+00 1.083E+00 8.776E−01

LIR-CMOP8

Mean 2.905E+00 2.690E−01† 7.043E−01† 5.223E−01† 1.788E−01†

SD 2.103E−01 8.100E−01 1.094E+00 9.669E−01 6.669E−01

LIR-CMOP9

Mean 3.692E+00 2.737E+00† 2.733E+00† 2.705E+00† 2.737E+00†

SD 6.318E−02 1.484E−01 1.284E−01 8.883E−02 1.483E−01

LIR-CMOP10

Mean 3.241E+00 2.874E+00† 2.929E+00† 2.899E+00† 2.886E+00†

SD 3.537E−04 7.851E−02 1.064E−01 1.207E−01 1.126E−01

LIR-CMOP11

Mean 4.263E+00 3.218E+00† 3.479E+00† 3.406E+00† 3.386E+00†

SD 1.685E−01 3.542E−01 1.252E−01 2.135E−01 1.831E−01

LIR-CMOP12

Mean 5.552E+00 4.858E+00† 5.059E+00† 4.972E+00† 4.902E+00†

SD 1.730E−01 3.280E−01 2.103E−01 2.596E−01 3.233E−01

LIR-CMOP13

Mean 5.710E+00 3.097E−01† 1.184E+00† 5.320E−01† 4.642E−01†

SD 1.084E−02 1.048E+00 2.250E+00 1.442E+00 1.426E+00
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Table 3 continued

Test instances MOEA/D-IEpsilon MOEA/D-Epsilon MOEA/D-SR MOEA/D-CDP CMOEA/D

LIR-CMOP14

Mean 6.184E+00 5.617E−01† 1.912E+00† 4.032E−01† 1.162E+00†

SD 1.053E−02 1.540E+00 2.705E+00 1.127E+00 2.281E+00

Friedman aligned test 7.7857 43.1786 32.3571 46.2143 47.9643

The last row provides the results of the Friedman aligned test. The p value computed by the aligned Friedman test is 8.864E−08. Wilcoxon rank
sum test at a 0.05 significance level is also performed between MOEA/D-IEpsilon and each of the other four CMOEAs
The best mean is highlighted in boldface
†,‡Performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IEpsilon, respectively

Table 4 Adjusted p-values for the Friedman aligned test in terms of HV metric (MOEA/D-IEpsilon is the control method)

Friedman aligned Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

CMOEA/D 0 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0

MOEA/D-CDP 0.000001 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000001 0.000001

MOEA/D-Epsilon 0.000004 0.000017 0.000008 0.000008 0.000008 0.000008 0.000008 0.000006 0.000004

MOEA/D=SR 0.001401 0.005605 0.001401 0.001401 0.001401 0.001401 0.001401 0.001401 0.001401

Epsilon are all equal to zero from generation 0 to Tc (Tc =
800). When the evolutionary generation is greater than Tc,
the RFSWP of MOEA/D-Epsilon quickly increase to one.
However, the RFSWP of MOEA/D-IEpsilon on these test
problems are dynamically changing from generation 0 to
Tc, which indicates that MOEA/D-IEpsilon keeps a bet-
ter balance of searching between infeasible and feasible
regions compared to MOEA/D-Epsilon. For LIR-CMOP5-
14, the RFSWP of MOEA/D-Epsilon are all equal to one
in the whole evolutionary process. On the contrary, the
RFSWP of MOEA/D-IEpsilon are dynamically changing.
Thus, MOEA/D-IEpsilon can maintain a better balance of
the searching between infeasible and feasible regions com-
pared with MOEA/D-Epsilon on LIR-CMOPs.

5.4.3 Analysis of experimental results

From the above performance comparison on the 14 test
instances LIR-CMOP1-14, it is clear thatMOEA/D-IEpsilon
has better diversity and convergence performance than the
other four decomposition-based CMOEAs on these 14 test
instances. A common feature of these test instances is that
each of them has a number of large infeasible regions, which
demonstrates that the proposed epsilon constraint-handling
method can deal with the large infeasible regions very well
using its automatic adjustment of the epsilon level.

6 Robot gripper optimization

To verify the capability of MOEA/D-IEpsilon to solve real-
world optimization problems, a robot gripper optimization

problemwith two conflicting objectives and eight constraints
is explored.

6.1 Definition of the robot gripper optimization

The robot gripper optimization problem is defined in Sara-
vanan et al. (2009) andDatta andDeb (2011). Five objectives
are formulated in these papers. The robot gripper optimiza-
tion problem considered in this paper has two conflicting
objectives and eight constraints. The geometrical structure
of the gripper is plotted in Fig. 5.

The robot gripper optimization problem considered in this
paper is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize f1(x) = P
minz Fk (x,z)

minimize f2(x) = a + b + c + e + l

subject to c1(x) = Ymin − y(x, Zmax ) ≥ 0

c2(x) = y(x, Zmax ) ≥ 0

c3(x) = y(x, 0) − Ymax ≥ 0

c4(x) = YG − y(x, 0) ≥ 0

c5(x) = (a + b)2 − l2 − e2 ≥ 0

c6(x) = (l − Zmax )
2 + (a − e)2 ≥ b2

c7(x) = l − Zmax ≥ 0

c8(x) = min Fk(x, z) − FG ≥ 0

(11)

where x = [a, b, c, e, l, f , δ]T has seven decision variables,
and each variable is shown in Table 5. The range of each deci-
sion variable is as follows: 10mm ≤ a ≤ 150mm, 10mm ≤
b ≤ 150mm, 100mm ≤ c ≤ 200mm, 0mm ≤ e ≤ 50mm,
10mm ≤ f ≤ 150mm, 100mm ≤ l ≤ 300mm and
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Fig. 3 Non-dominated solutions achieved by each algorithm with the minimized IGD in the 30 independent runs for LIR-CMOP1, LIR-CMOP4,
LIR-CMOP9 and LIR-CMOP11
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Fig. 4 The ratios of feasible to total solutions of each working population of MOEA/D-IEpsilon and MOEA/D-Epsilon on LIR-CMOP1-14

Table 5 Parameters of the
gripper optimization problem

Symbol Meaning of parameter Value

Ymin Minimal dimension of object to be gripped 50mm

YG Maximal range of the gripper ends displacement 150mm

Ymax Maximal dimension of object to be gripped 100mm

zmax Maximal displacement of the gripper actuator 100mm

P Actuating force of the gripper 100N

FG The lower bound of gripping force 50N

123



An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible. . .

Fig. 5 Geometrical structure of robot gripper mechanism

1.0 ≤ δ ≤ 3.14. Two rules are applied to fix the value of
f , and they are defined as follows:

Rule1: i f (a < 4b and c < a + b) then f = 2e + 10

Rule2: i f (a < 4b and c > a + b) then f = e + 50

According to the geometric analysis, the gripping force
Fk in Fig. 5 can be defined as follows:

Fk = Pb sin(α + β)

2c cosα
. (12)

The displacement of the gripper end is defined as follows:

y(x, z) = 2[e + f + c + sin(β + δ)]. (13)

where g =
√

(l − z)2 + e2 + φ, α = arccos( a
2+g2−b2

2ag ),

β = arccos( b
2+g2−a2

2bg ) − φ, φ = arctan e
l−z and z denotes a

dynamic displacement of the gripper actuator in the range of
0 to 100mm.

The first objective f1(x) represents a force transmis-
sion ratio between the actuating force P and the minimum
gripping force min Fk(x, z). We prefer to transform more
actuating force into the gripper force. Thus, this objective
should be minimized. The second objective f2(x) is the sum
of all elements of the robot gripper. It is relevant to the weight
of the robot gripper, and minimizing f2(x) can lead to a
lightweight design.

To study the distribution of solutions in the objective space
for the robot gripper optimization problem, 3,000,000 solu-
tions are generated, where 1,500,000 solutions are generated
randomly, and the other 1,500,000 solutions are generated by
MOEA/D-IEpsilon. In Fig. 6, we can observe that the robot
gripper optimization problem has large infeasible regions
(RFS = 0.1396), which can be solved well by the pro-
posed method MOEA/D-IEpsilon according to our previous
analysis. To verify this hypothesis, MOEA/D-IEpsilon and
the other four decomposition-based CMOEAs are tested on
the robot gripper optimization problems.

Fig. 6 Distribution of solutions of the robot gripper optimization prob-
lem in the objective space, RFS = 0.1396

6.2 Experimental study

6.2.1 Experimental settings

To solve the robot gripper optimization problem and eval-
uate the performance of the proposed MOEA/D-IEpsilon,
five decomposition-based CMOEAs, including MOEA/D-
IEpsilon, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP
andCMOEA/Dwith thedifferential evolution (DE) crossover,
are tested on the robot gripper optimization problem. The
detailed parameters of these five CMOEAs are the same as
listed in Sect. 5.1 except for the number of function evalua-
tions. In the case of the robot gripper optimization problem,
each CMOEA stops when 600,000 function evaluations are
reached. As the ideal PF of the gripper optimization problem
is not known in advance, we use only the hypervolumemetric
(Zitzler and Thiele 1999) to measure the performance of the
five tested CMOEAs. In the robot gripper optimization case,
the reference point zr = [5, 800]T .

6.2.2 Analysis of experiments

Table 6 shows the statistical results of HV values of
MOEA/D-IEpsilon and the other four CMOEAs on the robot
gripper optimization problem. It is clear that MOEA/D-
IEpsilon is significantly better than the other four CMOEAs.
To further demonstrate the superiority of the proposed
method MOEA/D-IEpsilon, the non-dominated solutions
achieved by each CMOEA during the 30 independent runs
are plotted in Fig. 7a–e. The box plot of HV values of the
five CMOEAs is shown in Fig. 7f. From Fig. 7, we see that
MOEA/D-IEpsilon has better performance than the other
four CMOEAs.

In order to verify the correctness of the optimization
results of the robot gripper optimization problem, three rep-
resentative individuals (A, B and C) are selected from the
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Table 6 HV results of MOEA/D-IEpsilon and the other four CMOEAs on the gripper optimization problem

Test Instances MOEA/D-IEpsilon MOEA/D-Epsilon MOEA/D-SR MOEA/D-CDP cMOEA/D

Mean 1.897E+03 1.891E+03† 1.889E+03† 1.869E+03† 1.865E+03†

SD 3.510E+00 7.151E+00 9.839E+00 8.124E+00 9.048E+00

Wilcoxon rank sum test at a 0.05 significance level is performed between MOEA/D-IEpsilon and each of the other four CMOEAs
The best mean is highlighted in boldface
†,‡Performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IEpsilon, respectively
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Fig. 7 Non-dominated solutions achieved by each algorithm during the 30 independent runs are plotted in (a)–(e). In (f), the box plots of each
CMOEA are plotted

Fig. 8 Non-dominated solutions achieved by MOEA/D-IEpsilon

non-dominated solutions achieved by MOEA/D-IEpsilon as
shown in Fig. 8. The configurations of the robot gripper
mechanism at each point are also plotted in Fig. 8.

To measure the minimum gripping force minz Fk(x, z),
a spring with a large stiffness coefficient is set vertically at
the end of the robot gripper during the simulation process.
The spring force is regarded as the gripping force when the
robot gripper is balanced by the spring. The simulation tool
is ADAMS 2013, and the stiffness coefficient of the spring
is 1013 N/m.

Table 7 shows the simulation results of the minimum grip-
ping force minz Fk(x, z) with three different configurations
of the robot gripper. The relative errors between the theo-
retical gripping forces and the simulated gripping forces are
less than 0.1%. Thus, we can conclude that the optimization
results of the robot gripper optimization problem achieved
by MOEA/D-IEpsilon are correct.
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Table 7 Simulated results of the
minimum gripping force
minz Fk(x, z) with three
different robot gripper
configurations

Sampled
point

The theoretical
gripping force
(N)

The simulated
result (N)

Relative
error (%)

A 50.0000 50.0002 0.0004

B 142.3168 142.4582 0.0994

C 92.5285 92.5877 0.0639

7 Conclusion

This paper proposes an improved epsilon constraint-handling
method embedded in the framework of MOEA/D. A new
CMOEA named MOEA/D-IEpsilon has been proposed. The
comprehensive experimental results indicate that MOEA/D-
IEpsilon has the ability to cross the large infeasible regions.
Comparedwith theother four decomposition-basedCMOEAs
includingMOEA/D-Epsilon, MOEA/D-SR,MOEA/D-CDP
andCMOEA/D,MOEA/D-IEpsilonhas the following advan-
tages:

– MOEA/D-IEpsilon has the ability to explore the feasible
and infeasible regions simultaneously during the evolu-
tionary process.

– MOEA/D-IEpsilon utilizes the ratio of feasible to total
solutions of the current population to dynamically bal-
ance the exploration between the feasible regions and
infeasible regions. It keeps a good balance of the search-
ing between infeasible and feasible regions.

– MOEA/D-IEpsilon is suitable for solving CMOPs with
large infeasible regions.

In terms of CMOPs, a new set of CMOPs named LIR-
CMOP1-14 was designed and presented in this paper. A
common feature of these test instances is that they have
large infeasible regions. The experimental results show that
MOEA/D-IEpsilon is significantly better than the other four
CMOEAs on this test suite. Thus, we hypothesize that
MOEA/D-IEpsilon is better than the other four CMOEAs
in solving CMOPs with large infeasible regions, in general.
To demonstrate the capacity of MOEA/D-IEpsilon to solve
real engineering problems, a robot gripper optimization prob-
lemwith two conflicting objectives and eight constraints was
used as a test problem. The experimental results also demon-
strated that MOEA/D-IEpsilon outperformed the other four
CMOEAs.

Proposed further work includes studying new constraint-
handling mechanisms to solve CMOPs with different types
of difficulty. One possible way is to collect more information
about the working population and utilize such information to
guide a CMOEA to select appropriate constraint-handling
methods in different evolutionary stages.
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Appendix

In this section, the detailed definitions of LIR-CMOP1-14
are listed in Table 8. The source codes of MOEA/D-IEpsilon
and LIR-CMOPs can be found in the Web site.2

2 http://imagelab.stu.edu.cn/Content.aspx?type=content&Content_
ID=238.
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Table 8 Objectives and constraints of LIR-CMOP1-14

Problem Objectives Constraints

LIR-CMOP1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 + g1(x)

f2(x) = 1 − x21 + g2(x)

g1(x) = ∑
j∈J1 (x j − sin(0.5πx1))2

g2(x) = ∑
j∈J2 (x j − cos(0.5πx1))2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(x) = (a − g1(x)) ∗ (g1(x) − b) ≥ 0

c2(x) = (a − g2(x)) ∗ (g2(x) − b) ≥ 0

a = 0.51, b = 0.5

x ∈ [0, 1]30

LIR-CMOP2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 + g1(x)

f2(x) = 1 − √
x1 + g2(x)

g1(x) = ∑
j∈J1 (x j − sin(0.5πx1))2

g2(x) = ∑
j∈J2 (x j − cos(0.5πx1))2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(x) = (a − g1(x)) ∗ (g1(x) − b) ≥ 0

c2(x) = (a − g2(x)) ∗ (g2(x) − b) ≥ 0

a = 0.51, b = 0.5

x ∈ [0, 1]30

LIR-CMOP3

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 + g1(x)

f2(x) = 1 − x21 + g2(x)

g1(x) = ∑
j∈J1 (x j − sin(0.5πx1))2

g2(x) = ∑
j∈J2 (x j − cos(0.5πx1))2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1(x) = (a − g1(x)) ∗ (g1(x) − b) ≥ 0

c2(x) = (a − g2(x)) ∗ (g2(x) − b) ≥ 0

c3(x) = sin(cπx1) − 0.5 ≥ 0

a = 0.51, b = 0.5, c = 20

x ∈ [0, 1]30

LIR-CMOP4

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 + g1(x)

f2(x) = 1 − √
x1 + g2(x)

g1(x) = ∑
j∈J1 (x j − sin(0.5πx1))2

g2(x) = ∑
j∈J2 (x j − cos(0.5πx1))2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1(x) = (a − g1(x)) ∗ (g1(x) − b) ≥ 0

c2(x) = (a − g2(x)) ∗ (g2(x) − b) ≥ 0

c3(x) = sin(cπx1) − 0.5 ≥ 0

a = 0.51, b = 0.5, c = 20

x ∈ [0, 1]30

LIR-CMOP5

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + 10 ∗ g1(x) + 0.7057

f2(x) = 1 − √
x1 + 10 ∗ g2(x) + 0.7057

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck(x) = (( f1 − pk) cos θk − ( f2 − qk) sin θk)
2/a2k

+(( f1 − pk) sin θk + ( f2 − qk) cos θk)
2/b2k ≥ r

pk = [1.6, 2.5], qk = [1.6, 2.5]
ak = [2, 2], bk = [4, 8]
r = 0.1, θk = −0.25π

x ∈ [0, 1]30, k = 1, 2

LIR-CMOP6

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + 10 ∗ g1(x) + 0.7057

f2(x) = 1 − x21 + 10 ∗ g2(x) + 0.7057

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck(x) = (( f1 − pk) cos θk − ( f2 − qk) sin θk)
2/a2k

+(( f1 − pk) sin θk + ( f2 − qk) cos θk)
2/b2k ≥ r

pk = [1.8, 2.8], qk = [1.8, 2.8]
ak = [2, 2], bk = [8, 8]
r = 0.1, θk = −0.25π

x ∈ [0, 1]30, k = 1, 2

LIR-CMOP7

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + 10 ∗ g1(x) + 0.7057

f2(x) = 1 − √
x1 + 10 ∗ g2(x) + 0.7057

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck(x) = (( f1 − pk) cos θk − ( f2 − qk) sin θk)
2/a2k

+(( f1 − pk) sin θk + ( f2 − qk) cos θk)
2/b2k ≥ r

pk = [1.2, 2.25, 3.5], qk = [1.2, 2.25, 3.5]
ak = [2, 2.5, 2.5], bk = [6, 12, 10]
r = 0.1, θk = −0.25π

x ∈ [0, 1]30, k = 1, 2, 3

LIR-CMOP8

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + 10 ∗ g1(x) + 0.7057

f2(x) = 1 − x21 + 10 ∗ g2(x) + 0.7057

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck(x) = (( f1 − pk) cos θk − ( f2 − qk) sin θk)
2/a2k

+(( f1 − pk) sin θk + ( f2 − qk) cos θk)
2/b2k ≥ r

pk = [1.2, 2.25, 3.5], qk = [1.2, 2.25, 3.5]
ak = [2, 2.5, 2.5], bk = [6, 12, 10]
r = 0.1, θk = −0.25π

x ∈ [0, 1]30, k = 1, 2, 3
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Table 8 continued

Problem Objectives Constraints

LIR-CMOP9

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1.7057x1(10 ∗ g1(x) + 1)

f2(x) = 1.7057(1 − x21 )(10 ∗ g2(x) + 1)

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(x) = (( f1 − p1) cos θ1 − ( f2 − q1) sin θ1)
2/a21

+(( f1 − p1) sin θ1 + ( f2 − q1) cos θ1)
2/b21 ≥ r

c2(x) = f1 sin α + f2 cosα

− sin(4π( f1 cosα − f2 sin α)) − 2 ≥ 0

p1 = 1.4, q1 = 1.4, a1 = 1.5, b1 = 6.0

r = 0.1, α = 0.25π, θ1 = −0.25π

x ∈ [0, 1]30

LIR-CMOP10

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1.7057x1(10 ∗ g1(x) + 1)

f2(x) = 1.7057(1 − √
x1)(10 ∗ g2(x) + 1)

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(x) = (( f1 − p1) cos θ1 − ( f2 − q1) sin θ1)
2/a21

+(( f1 − p1) sin θ1 + ( f2 − q1) cos θ1)
2/b21 ≥ r

c2(x) = f1 sin α + f2 cosα

− sin(4π( f1 cosα − f2 sin α)) − 1 ≥ 0

p1 = 1.1, q1 = 1.2, a1 = 2.0, b1 = 4.0

r = 0.1, α = 0.25π, θ1 = −0.25π

x ∈ [0, 1]30

LIR-CMOP11

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1.7057x1(10 ∗ g1(x) + 1)

f2(x) = 1.7057(1 − √
x1)(10 ∗ g2(x) + 1)

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(x) = (( f1 − p1) cos θ1 − ( f2 − q1) sin θ1)
2/a21

+(( f1 − p1) sin θ1 + ( f2 − q1) cos θ1)
2/b21 ≥ r

c2(x) = f1 sin α + f2 cosα

− sin(4π( f1 cosα − f2 sin α)) − 2.1 ≥ 0

p1 = 1.2, q1 = 1.2, a1 = 1.5, b1 = 5.0

r = 0.1, α = 0.25π, θ1 = −0.25π

x ∈ [0, 1]30

LIR-CMOP12

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1.7057x1(10 ∗ g1(x) + 1)

f2(x) = 1.7057(1 − x21 )(10 ∗ g2(x) + 1)

g1(x) = ∑
i∈J1 (xi − sin( 0.5i30 πx1))

2

g2(x) = ∑
j∈J2 (x j − cos( 0.5 j30 πx1))

2

J1 = {3, 5, . . . , 29}, J2 = {2, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(x) = (( f1 − p1) cos θ1 − ( f2 − q1) sin θ1)
2/a21

+(( f1 − p1) sin θ1 + ( f2 − q1) cos θ1)
2/b21 ≥ r

c2(x) = f1 sin α + f2 cosα

− sin(4π( f1 cosα − f2 sin α)) − 2.5 ≥ 0

p1 = 1.6, q1 = 1.6, a1 = 1.5, b1 = 6.0

r = 0.1, α = 0.25π, θ1 = −0.25π

x ∈ [0, 1]30

LIR-CMOP13

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = (1.7057 + g1) cos(0.5πx1) cos(0.5πx2)

f2(x) = (1.7057 + g1) cos(0.5πx1) sin(0.5πx2)

f3(x) = (1.7057 + g1) sin(0.5πx1)

g1 = ∑
i∈J 10(xi − 0.5)2

J = {3, 4, . . . , 30}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(x) = (g(x) − 9)(g(x) − 4)

c2(x) = (g(x) − 3.61)(g(x) − 3.24)

g(x) = f 21 + f 22 + f 23
x ∈ [0, 1]30

LIR-CMOP14

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = (1.7057 + g1) cos(0.5πx1) cos(0.5πx2)

f2(x) = (1.7057 + g1) cos(0.5πx1) sin(0.5πx2)

f3(x) = (1.7057 + g1) sin(0.5πx1)

g1 = ∑
i∈J 10(xi − 0.5)2

J = {3, 4, . . . , 30}

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1(x) = (g(x) − 9)(g(x) − 4)

c2(x) = (g(x) − 3.61)(g(x) − 3.24)

c3(x) = (g(x) − 3.0625)(g(x) − 2.56)

g(x) = f 21 + f 22 + f 23
x ∈ [0, 1]30
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